Sterol carrier protein-2 directly interacts with caveolin-1 in vitro and in vivo.

نویسندگان

  • Minglong Zhou
  • Rebecca D Parr
  • Anca D Petrescu
  • H Ross Payne
  • Barbara P Atshaves
  • Ann B Kier
  • Judith M Ball
  • Friedhelm Schroeder
چکیده

HDL-mediated reverse-cholesterol transport as well as phosphoinositide signaling are mediated through plasma membrane microdomains termed caveolae/lipid rafts. However, relatively little is known regarding mechanism(s) whereby these lipids traffic to or are targeted to caveolae/lipid rafts. Since sterol carrier protein-2 (SCP-2) binds both cholesterol and phosphatidylinositol, the possibility that SCP-2 might interact with caveolin-1 and caveolae was examined. Double immunolabeling and laser scanning fluorescence microscopy showed that a small but significant portion of SCP-2 colocalized with caveolin-1 primarily at the plasma membrane of L-cells and more so within intracellular punctuate structures in hepatoma cells. In SCP-2 overexpressing L-cells, SCP-2 was detected in close proximity to caveolin, 48 +/- 4 A, as determined by fluorescence resonance energy transfer (FRET) and immunogold electron microscopy. Cell fractionation of SCP-2 overexpressing L-cells and Western blotting detected SCP-2 in purified plasma membranes, especially in caveolae/ lipid rafts as compared to the nonraft fraction. SCP-2 and caveolin-1 were coimmunoprecipitated from cell lysates by anti-caveolin-1 and anti-SCP-2. Finally, a yeast two-hybrid assay demonstrated that SCP-2 directly interacts with caveolin-1 in vivo. These interactions of SCP-2 with caveolin-1 were specific since a functionally related protein, phosphatidyinositol transfer protein (PITP), colocalized much less well with caveolin-1, was not in close proximity to caveolin-1 (i.e., >120 A), and was not coimmunoprecipitated by anti-caveolin-1 from cell lysates. In summary, it was shown for the first time that SCP-2 (but not PITP) selectively interacted with caveolin-1, both within the cytoplasm and at the plasma membrane. These data contribute significantly to our understanding of the role of SCP-2 in cholesterol and phosphatidylinositol targeted from intracellular sites of synthesis in the endoplasmic reticulum to caveolae/lipid rafts at the cell surface plasma membrane.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new N-terminal recognition domain in caveolin-1 interacts with sterol carrier protein-2 (SCP-2).

Although plasma membrane domains, such as caveolae, provide an organizing principle for signaling pathways and cholesterol homeostasis in the cell, relatively little is known regarding specific mechanisms, whereby intracellular lipid-binding proteins are targeted to caveolae. Therefore, the interaction between caveolin-1 and sterol carrier protein-2 (SCP-2), a protein that binds and transfers b...

متن کامل

Vimentin-dependent utilization of LDL-cholesterol in human adrenal tumor cells is not associated with the level of expression of apoE, sterol carrier protein-2, or caveolin.

SW-13 adrenal tumor cells that lack detectable intermediate filaments (IF-free) exhibit an impaired capacity to esterify lipoprotein-derived cholesterol compared with cells that contain vimentin filaments. IF-free cells were found to synthesize and secrete significant amounts of apoE, while apoE secretion was nearly undetectable in cell lines that spontaneously express vimentin. However, stable...

متن کامل

In vitro Interaction of HSV-1 ORF P with Both Thymidine Kinase (TK) and an Unidentified Cellular Protein

Herpes simplex virus type-1 (HSV-1) is a neurotropic pathogen of humans that establishes latent infection in the sensory ganglia innervating the site of primary infection. A number of genes control HSV-1 pathogenicity and latency. Open reading frame P (ORF P) is one of these genes that might have a role in latency and pathogenesis. A complication in the analysis of the role of ORF P in the HSV-...

متن کامل

SCP-2/SCP-x gene ablation alters lipid raft domains in primary cultured mouse hepatocytes.

Although reverse cholesterol transport from peripheral cell types is mediated through plasma membrane microdomains termed lipid rafts, almost nothing is known regarding the existence, protein/lipid composition, or structure of these putative domains in liver hepatocytes, cells responsible for the net removal of cholesterol from the body. Lipid rafts purified from hepatocyte plasma membranes by ...

متن کامل

Overexpression of sterol carrier protein-2 differentially alters hepatic cholesterol accumulation in cholesterol-fed mice.

Although in vitro studies suggest a role for sterol carrier protein-2 (SCP-2) in cholesterol trafficking and metabolism, the physiological significance of these observations remains unclear. This issue was addressed by examining the response of mice overexpressing physiologically relevant levels of SCP-2 to a cholesterol-rich diet. While neither SCP-2 overexpression nor cholesterol-rich diet al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 43 23  شماره 

صفحات  -

تاریخ انتشار 2004